Определить одз функции онлайн. ОДЗ. Область Допустимых Значений. можно познакомиться с функциями и производными

💖 Нравится? Поделись с друзьями ссылкой

Тип задания: 13

Условие

а) Решите уравнение 2(\sin x-\cos x)=tgx-1.

б) \left[ \frac{3\pi }2;\,3\pi \right].

Показать решение

Решение

а) Раскрыв скобки и перенеся все слагаемые в левую часть, получим уравнение 1+2 \sin x-2 \cos x-tg x=0. Учитывая, что \cos x \neq 0, слагаемое 2 \sin x можно заменить на 2 tg x \cos x, получим уравнение 1+2 tg x \cos x-2 \cos x-tg x=0, которое способом группировки можно привести к виду (1-tg x)(1-2 \cos x)=0.

1) 1-tg x=0, tg x=1, x=\frac\pi 4+\pi n, n \in \mathbb Z;

2) 1-2 \cos x=0, \cos x=\frac12, x=\pm \frac\pi 3+2\pi n, n \in \mathbb Z.

б) С помощью числовой окружности отберём корни, принадлежащие промежутку \left[ \frac{3\pi }2;\, 3\pi \right].

x_1=\frac\pi 4+2\pi =\frac{9\pi }4,

x_2=\frac\pi 3+2\pi =\frac{7\pi }3,

x_3=-\frac\pi 3+2\pi =\frac{5\pi }3.

Ответ

а) \frac\pi 4+\pi n, \pm\frac\pi 3+2\pi n, n \in \mathbb Z;

б) \frac{5\pi }3, \frac{7\pi }3, \frac{9\pi }4.

Тип задания: 13
Тема: Область допустимых значений (ОДЗ)

Условие

а) Решите уравнение (2\sin ^24x-3\cos 4x)\cdot \sqrt {tgx}=0.

б) Укажите корни этого уравнения, принадлежащие промежутку \left(0;\,\frac{3\pi }2\right] ;

Показать решение

Решение

а) ОДЗ: \begin{cases} tgx\geqslant 0\\x\neq \frac\pi 2+\pi k,k \in \mathbb Z. \end{cases}

Исходное уравнение на ОДЗ равносильно совокупности уравнений

\left[\!\!\begin{array}{l} 2 \sin ^2 4x-3 \cos 4x=0,\\tg x=0. \end{array}\right.

Решим первое уравнение. Для этого сделаем замену \cos 4x=t, t \in [-1; 1]. Тогда \sin^24x=1-t^2. Получим:

2(1-t^2)-3t=0,

2t^2+3t-2=0,

t_1=\frac12, t_2=-2, t_2\notin [-1; 1].

\cos 4x=\frac12,

4x=\pm \frac\pi 3+2\pi n,

x=\pm \frac\pi {12}+\frac{\pi n}2, n \in \mathbb Z.

Решим второе уравнение.

tg x=0,\, x=\pi k, k \in \mathbb Z.

При помощи единичной окружности найдём решения, которые удовлетворяют ОДЗ.

Знаком «+» отмечены 1 -я и 3 -я четверти, в которых tg x>0.

Получим: x=\pi k, k \in \mathbb Z; x=\frac\pi {12}+\pi n, n \in \mathbb Z; x=\frac{5\pi }{12}+\pi m, m \in \mathbb Z.

б) Найдём корни, принадлежащие промежутку \left(0;\,\frac{3\pi }2\right].

x=\frac\pi {12}, x=\frac{5\pi }{12}; x=\pi ; x=\frac{13\pi }{12}; x=\frac{17\pi }{12}.

Ответ

а) \pi k, k \in \mathbb Z; \frac\pi {12}+\pi n, n \in \mathbb Z; \frac{5\pi }{12}+\pi m, m \in \mathbb Z.

б) \pi; \frac\pi {12}; \frac{5\pi }{12}; \frac{13\pi }{12}; \frac{17\pi }{12}.

Источник: «Математика. Подготовка к ЕГЭ-2017. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.

Тип задания: 13
Тема: Область допустимых значений (ОДЗ)

Условие

а) Решите уравнение: \cos ^2x+\cos ^2\frac\pi 6=\cos ^22x+\sin ^2\frac\pi 3;

б) Укажите все корни, принадлежащие промежутку \left(\frac{7\pi }2;\,\frac{9\pi }2\right].

Показать решение

Решение

а) Так как \sin \frac\pi 3=\cos \frac\pi 6, то \sin ^2\frac\pi 3=\cos ^2\frac\pi 6, значит, заданное уравнение равносильно уравнению \cos^2x=\cos ^22x, которое, в свою очередь, равносильно уравнению \cos^2x-\cos ^2 2x=0.

Но \cos ^2x-\cos ^22x= (\cos x-\cos 2x)\cdot (\cos x+\cos 2x) и

\cos 2x=2 \cos ^2 x-1, поэтому уравнение примет вид

(\cos x-(2 \cos ^2 x-1))\,\cdot (\cos x+(2 \cos ^2 x-1))=0,

(2 \cos ^2 x-\cos x-1)\,\cdot (2 \cos ^2 x+\cos x-1)=0.

Тогда либо 2 \cos ^2 x-\cos x-1=0, либо 2 \cos ^2 x+\cos x-1=0.

Решая первое уравнение как квадратное уравнение относительно \cos x, получаем:

(\cos x)_{1,2}=\frac{1\pm\sqrt 9}4=\frac{1\pm3}4. Поэтому либо \cos x=1, либо \cos x=-\frac12. Если \cos x=1, то x=2k\pi , k \in \mathbb Z. Если \cos x=-\frac12, то x=\pm \frac{2\pi }3+2s\pi , s \in \mathbb Z.

Аналогично, решая второе уравнение, получаем либо \cos x=-1, либо \cos x=\frac12. Если \cos x=-1, то корни x=\pi +2m\pi , m \in \mathbb Z. Если \cos x=\frac12, то x=\pm \frac\pi 3+2n\pi , n \in \mathbb Z.

Объединим полученные решения:

x=m\pi , m \in \mathbb Z; x=\pm \frac\pi 3 +s\pi , s \in \mathbb Z.

б) Выберем корни, которые попали в заданный промежуток, с помощью числовой окружности.

Получим: x_1 =\frac{11\pi }3, x_2=4\pi , x_3 =\frac{13\pi }3.

Ответ

а) m\pi, m \in \mathbb Z; \pm \frac\pi 3 +s\pi , s \in \mathbb Z;

б) \frac{11\pi }3, 4\pi , \frac{13\pi }3.

Источник: «Математика. Подготовка к ЕГЭ-2017. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.

Тип задания: 13
Тема: Область допустимых значений (ОДЗ)

Условие

а) Решите уравнение 10\cos ^2\frac x2=\frac{11+5ctg\left(\dfrac{3\pi }2-x\right) }{1+tgx}.

б) Укажите корни этого уравнения, принадлежащие интервалу \left(-2\pi ; -\frac{3\pi }2\right).

Показать решение

Решение

а) 1. Согласно формуле приведения, ctg\left(\frac{3\pi }2-x\right) =tgx. Областью определения уравнения будут такие значения x , что \cos x \neq 0 и tg x \neq -1. Преобразуем уравнение, пользуясь формулой косинуса двойного угла 2 \cos ^2 \frac x2=1+\cos x. Получим уравнение: 5(1+\cos x) =\frac{11+5tgx}{1+tgx}.

Заметим, что \frac{11+5tgx}{1+tgx}= \frac{5(1+tgx)+6}{1+tgx}= 5+\frac{6}{1+tgx}, поэтому уравнение принимает вид: 5+5 \cos x=5 +\frac{6}{1+tgx}. Отсюда \cos x =\frac{\dfrac65}{1+tgx}, \cos x+\sin x =\frac65.

2. Преобразуем \sin x+\cos x по формуле приведения и формуле суммы косинусов: \sin x=\cos \left(\frac\pi 2-x\right), \cos x+\sin x= \cos x+\cos \left(\frac\pi 2-x\right)= 2\cos \frac\pi 4\cos \left(x-\frac\pi 4\right)= \sqrt 2\cos \left(x-\frac\pi 4\right) = \frac65.

Отсюда \cos \left(x-\frac\pi 4\right) =\frac{3\sqrt 2}5. Значит, x-\frac\pi 4= arc\cos \frac{3\sqrt 2}5+2\pi k, k \in \mathbb Z,

или x-\frac\pi 4= -arc\cos \frac{3\sqrt 2}5+2\pi t, t \in \mathbb Z.

Поэтому x=\frac\pi 4+arc\cos \frac{3\sqrt 2}5+2\pi k,k \in \mathbb Z,

или x =\frac\pi 4-arc\cos \frac{3\sqrt 2}5+2\pi t,t \in \mathbb Z.

Найденные значения x принадлежат области определения.

б) Выясним сначала куда попадают корни уравнения при k=0 и t=0. Это будут соответственно числа a=\frac\pi 4+arccos \frac{3\sqrt 2}5 и b=\frac\pi 4-arccos \frac{3\sqrt 2}5.

1. Докажем вспомогательное неравенство:

\frac{\sqrt 2}{2}<\frac{3\sqrt 2}2<1.

Действительно, \frac{\sqrt 2}{2}=\frac{5\sqrt 2}{10}<\frac{6\sqrt2}{10}=\frac{3\sqrt2}{5}.

Заметим также, что \left(\frac{3\sqrt 2}5\right) ^2=\frac{18}{25}<1^2=1, значит \frac{3\sqrt 2}5<1.

2. Из неравенств (1) по свойству арккосинуса получаем:

arccos 1

0

Отсюда \frac\pi 4+0<\frac\pi 4+arc\cos \frac{3\sqrt 2}5<\frac\pi 4+\frac\pi 4,

0<\frac\pi 4+arccos \frac{3\sqrt 2}5<\frac\pi 2,

0

Аналогично, -\frac\pi 4

0=\frac\pi 4-\frac\pi 4<\frac\pi 4-arccos \frac{3\sqrt 2}5< \frac\pi 4<\frac\pi 2,

0

При k=-1 и t=-1 получаем корни уравнения a-2\pi и b-2\pi.

\Bigg(a-2\pi =-\frac74\pi +arccos \frac{3\sqrt 2}5,\, b-2\pi =-\frac74\pi -arccos \frac{3\sqrt 2}5\Bigg). При этом -2\pi

2\pi Значит, эти корни принадлежат заданному промежутку \left(-2\pi , -\frac{3\pi }2\right).

При остальных значениях k и t корни уравнения не принадлежат заданному промежутку.

Действительно, если k\geqslant 1 и t\geqslant 1, то корни больше 2\pi. Если k\leqslant -2 и t\leqslant -2, то корни меньше -\frac{7\pi }2.

Ответ

а) \frac\pi4\pm arccos\frac{3\sqrt2}5+2\pi k, k\in\mathbb Z;

б) -\frac{7\pi}4\pm arccos\frac{3\sqrt2}5.

Источник: «Математика. Подготовка к ЕГЭ-2017. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.

Тип задания: 13
Тема: Область допустимых значений (ОДЗ)

Условие

а) Решите уравнение \sin \left(\frac\pi 2+x\right) =\sin (-2x).

б) Найдите все корни этого уравнения, принадлежащие промежутку ;

Показать решение

Решение

а) Преобразуем уравнение:

\cos x =-\sin 2x,

\cos x+2 \sin x \cos x=0,

\cos x(1+2 \sin x)=0,

\cos x=0,

x =\frac\pi 2+\pi n, n \in \mathbb Z;

1+2 \sin x=0,

\sin x=-\frac12,

x=(-1)^{k+1}\cdot \frac\pi 6+\pi k, k \in \mathbb Z.

б) Корни, принадлежащие отрезку , найдём с помощью единичной окружности.

Указанному промежутку принадлежит единственное число \frac\pi 2.

Ответ

а) \frac\pi 2+\pi n, n \in \mathbb Z; (-1)^{k+1}\cdot \frac\pi 6+\pi k, k \in \mathbb Z;

б) \frac\pi 2.

Источник: «Математика. Подготовка к ЕГЭ-2017. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.

Тип задания: 13
Тема: Область допустимых значений (ОДЗ)

Условие

а) Решите уравнение \frac{\sin x-1}{1+\cos 2x}=\frac{\sin x-1}{1+\cos (\pi +x)}.

б) Найдите все корни этого уравнения, принадлежащие отрезку \left[ -\frac{3\pi }{2}; -\frac{\pi }2 \right].

Показать решение

Решение

а) Найдём ОДЗ уравнения: \cos 2x \neq -1, \cos (\pi +x) \neq -1; Отсюда ОДЗ: x \neq \frac \pi 2+\pi k,

k \in \mathbb Z, x \neq 2\pi n, n \in \mathbb Z. Заметим, что при \sin x=1, x=\frac \pi 2+2\pi k, k \in \mathbb Z.

Полученное множество значений x не входит в ОДЗ.

Значит, \sin x \neq 1.

Разделим обе части уравнения на множитель (\sin x-1), отличный от нуля. Получим уравнение \frac 1{1+\cos 2x}=\frac 1{1+\cos (\pi +x)}, или уравнение 1+\cos 2x=1+\cos (\pi +x). Применяя в левой части формулу понижения степени, а в правой — формулу приведения, получим уравнение 2 \cos ^2 x=1-\cos x. Это уравнение с помощью замены \cos x=t, где -1 \leqslant t \leqslant 1 сводим к квадратному: 2t^2+t-1=0, корни которого t_1=-1 и t_2=\frac12. Возвращаясь к переменной x , получим \cos x = \frac12 или \cos x=-1, откуда x=\frac \pi 3+2\pi m, m \in \mathbb Z, x=-\frac \pi 3+2\pi n, n \in \mathbb Z, x=\pi +2\pi k, k \in \mathbb Z.

б) Решим неравенства

1) -\frac{3\pi }2 \leqslant \frac{\pi }3+2\pi m \leqslant -\frac \pi 2 ,

2) -\frac{3\pi }2 \leqslant -\frac \pi 3+2\pi n \leqslant -\frac \pi {2,}

3) -\frac{3\pi }2 \leqslant \pi+2\pi k \leqslant -\frac \pi 2 , m, n, k \in \mathbb Z.

1) -\frac{3\pi }2 \leqslant \frac{\pi }3+2\pi m \leqslant -\frac \pi 2 , -\frac32 \leqslant \frac13+2m \leqslant -\frac12 -\frac{11}6 \leqslant 2m \leqslant -\frac56 , -\frac{11}{12} \leqslant m \leqslant -\frac5{12}.

\left [-\frac{11}{12};-\frac5{12}\right] .

2) -\frac {3\pi} 2 \leqslant -\frac{\pi }3+2\pi n \leqslant -\frac{\pi }{2}, -\frac32 \leqslant -\frac13 +2n \leqslant -\frac12 , -\frac76 \leqslant 2n \leqslant -\frac1{6}, -\frac7{12} \leqslant n \leqslant -\frac1{12}.

Нет целых чисел, принадлежащих промежутку \left[ -\frac7{12} ; -\frac1{12} \right].

3) -\frac{3\pi }2 \leqslant \pi +2\pi k\leqslant -\frac{\pi }2, -\frac32 \leqslant 1+2k\leqslant -\frac12, -\frac52 \leqslant 2k \leqslant -\frac32, -\frac54 \leqslant k \leqslant -\frac34.

Этому неравенству удовлетворяет k=-1, тогда x=-\pi.

Ответ

а) \frac \pi 3+2\pi m; -\frac \pi 3+2\pi n; \pi +2\pi k, m, n, k \in \mathbb Z;

б) -\pi .

Источник: «Математика. Подготовка к ЕГЭ-2017. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.

(\sin x-\cos 2x)\cdot (\sin x+\cos 2x) и

\cos 2x=1-2 \sin ^2 x, поэтому уравнение примет вид

(\sin x-(1-2 \sin ^2 x))\,\cdot (\sin x+(1-2 \sin ^2 x))=0,

(2 \sin ^2 x+\sin x-1)\,\cdot (2 \sin ^2 x-\sin x-1)=0.

Тогда либо 2 \sin ^2 x+\sin x-1=0, либо 2 \sin ^2 x-\sin x-1=0.

Решим первое уравнение как квадратное относительно \sin x,

(\sin x)_{1,2}=\frac{-1 \pm \sqrt 9}4=\frac{-1 \pm 3}4. Поэтому либо \sin x=-1, либо \sin x=\frac12. Если \sin x=-1, то x=\frac{3\pi }2+ 2k\pi , k \in \mathbb Z. Если \sin x=\frac12, то либо x=\frac\pi 6 +2s\pi , s \in \mathbb Z, либо x=\frac{5\pi }6+2t\pi , t \in \mathbb Z.

Аналогично, решая второе уравнение, получаем либо \sin x=1, либо \sin x=-\frac12. Тогда x =\frac\pi 2+2m\pi , m \in \mathbb Z, либо x=\frac{-\pi }6 +2n\pi , n \in \mathbb Z, либо x=\frac{-5\pi }6+2p\pi , p \in \mathbb Z.

Объединим полученные решения:

x=\frac\pi 2+m\pi,m\in\mathbb Z; x=\pm\frac\pi 6+s\pi,s \in \mathbb Z.

б) Выберем корни, которые попали в заданный промежуток с помощью числовой окружности.

Получим: x_1 =\frac{7\pi }2, x_2 =\frac{23\pi }6, x_3 =\frac{25\pi }6.

Ответ

а) \frac\pi 2+ m\pi , m \in \mathbb Z; \pm \frac\pi 6 +s\pi , s \in \mathbb Z;

б) \frac{7\pi }2;\,\,\frac{23\pi }6;\,\,\frac{25\pi }6.

В математике имеется достаточно небольшое количество элементарных функций, область определения которых ограничена. Все остальные "сложные" функции - это всего лишь их сочетания и комбинации.

1. Дробная функция - ограничение на знаменатель.

2. Корень четной степени - ограничение на подкоренное выражение.

3. Логарифмы - ограничение на основание логарифма и подлогарифмическое выражение.

3. Тригонометрические tg(x) и ctg(x) - ограничение на аргумент.

Для тангенса:

4. Обратные тригонометрические функции.

Арксинус Арккосинус Арктангенс, Арккотангенс

Далее решаются следующие примеры на тему "Область определения функций".

Пример 1 Пример 2
Пример 3 Пример 4
Пример 5 Пример 6
Пример 7 Пример 8
Пример 9 Пример 10
Пример 11 Пример 12
Пример 13 Пример 14
Пример 15 Пример 16

Пример нахождения области определения функции №1

Нахождение области определения любой линейной функции, т.е. функции первой степени:

y = 2x + 3 - уравнение задает прямую на плоскости.

Посмотрим внимательно на функцию и подумаем, какие же числовые значения мы сможем подставить в уравнение вместо переменной х?

Попробуем подставить значение х=0

Так как y = 2·0 + 3 = 3 - получили числовое значение, следовательно функция существует при взятом значении переменной х=0.

Попробуем подставить значение х=10

так как y = 2·10 + 3 = 23 - функция существует при взятом значении переменной х=10 .

Попробуем подставить значение х=-10

так как y = 2·(-10) + 3 = -17 - функция существует при взятом значении переменной х=-10 .

Уравнение задает прямую линию на плоcкости, а прямая не имеет ни начала ни конца, следовательно она существует для любых значений х.


Заметим, что какие бы числовые значения мы не подставляли в заданную функцию вместо х, всегда получим числовое значение переменной y.

Следовательно, функция существует для любого значения x ∈ R или запишем так: D(f) = R

Формы записи ответа: D(f)=R или D(f)=(-∞:+∞)или x∈R или x∈(-∞:+∞)

Сделаем вывод:

Для любой функции вида y = ax + b областью определения является множество действительных чисел.

Пример нахождения области определения функции №2

Задана функция вида:

y = 10/(x + 5) - уравнение гиперболы

Имея дело с дробной функцией, вспомним, что на ноль делить нельзя. Следовательно функция будет существовать для всех значений х, которые не

обращают знаменатель в ноль. Попробуем подставить какие-либо произвольные значения х.

При х = 0 имеем y = 10/(0 + 5) = 2 - функция существует.

При х = 10 имеем y = 10/(10 + 5) = 10/15 = 2/ 3 - функция существует.

При х = -5 имеем y = 10/(-5 + 5) = 10/0 - функция в этой точке не существует.

Т.е. если заданная функция дробная, то необходимо знаменатель приравнять нулю и найти такую точку, в которой функция не существует.

В нашем случае:

x + 5 = 0 → x = -5 - в этой точке заданная функция не существует.

x + 5 ≠ 0 → x ≠ -5

Для наглядности изобразим графически:

На графике также видим, что гипербола максимально близко приближается к прямой х = -5 , но самого значения -5 не достигает.

Видим, что заданная функция существует во всех точках действительной оси, кроме точки x = -5

Формы записи ответа: D(f)=R\{-5} илиD(f)=(-∞;-5) (-5;+∞) или x∈ R\{-5} илиx∈ (-∞;-5) (-5;+∞)

Если заданная функция дробная, то наличие знаменателя накладывает условие неравенства нулю знаменателя.


Пример нахождения области определения функции №3

Рассмотрим пример нахождения области определения функции с корнем четной степени:


Так как квадратный корень мы можем извлечь только из неотрицательного числа, следовательно, функция под корнем - неотрицательна.

2х - 8 ≥ 0

Решим простое неравенство:

2х - 8 ≥ 0 → 2х ≥ 8 → х ≥ 4

Заданная функция существует только при найденных значениях х ≥ 4 или D(f)=∪∪/Режим доступа: Материалы сайтов www.fipi.ru, www.eg

  • Область допустимых значений - есть решение [Электронный ресурс]/Режим доступа: rudocs.exdat.com›docs/index-16853.html
  • ОДЗ - область допустимых значений, как найти ОДЗ [Электронный ресурс]/Режим доступа: cleverstudents.ru›expressions/odz.html
  • Область допустимых значений: теория и практика [Электронный ресурс]/Режим доступа: pandia.ru›text/78/083/13650.php
  • Что такое ОДЗ [Электронный ресурс]/ Режим доступа: www.cleverstudents.ru›odz.html
  • Что такое ОДЗ и как его искать - объяснение и пример. Электронный ресурс]/ Режим доступа: cos-cos.ru›math/82/
  • Приложение 1

    Практическая работа «ОДЗ: когда, зачем и как?»

    Вариант 1

    Вариант 2

    │х+14│= 2 - 2х

    │3-х│=1 - 3х

    Приложение 2

    Ответы к заданиям практической работы «ОДЗ: когда, зачем и как?»

    Вариант 1

    Вариант 2

    Ответ: корней нет

    Ответ: х-любое число, кроме х=5

    9х+ = +27 ОДЗ: х≠3

    Ответ: корней нет

    ОДЗ: х=-3, х=5. Ответ:-3;5.

    у= -убывает,

    у= -возрастает

    Значит, уравнение имеет не более одного корня. Ответ: х=6.

    ОДЗ: → →х≥5

    Ответ:х≥5, х≤-6.

    │х+14│=2-2х ОДЗ:2-2х≥0, х≤1

    х=-4, х=16, 16 не принадлежит ОДЗ

    Убывает, -возрастает

    Уравнение имеет не более одного корня. Ответ: корней нет.

    0, ОДЗ: х≥3,х≤2

    Ответ: х≥3,х≤2

    8х+ = -32, ОДЗ: х≠-4.

    Ответ: корней нет.

    х=7, х=1. Ответ: решений нет

    Возрастает, - убывает

    Ответ: х=2.

    0 ОДЗ: х≠15

    Ответ: х- любое число, кроме х=15.

    │3-х│=1-3х, ОДЗ: 1-3х≥0, х≤

    х=-1, х=1 не принадлежит ОДЗ.

    Ответ: х=-1.

    В математике бесконечное множество функций. И у каждой - свой характер.) Для работы с самыми разнообразными функциями нужен единый подход. Иначе, какая же это математика?!) И такой подход есть!

    При работе с любой функцией мы предъявляем ей стандартный набор вопросов. И первый, самый важный вопрос - это область определения функции. Иногда эту область называют множеством допустимых значений аргумента, областью задания функции и т.п.

    Что такое область определения функции? Как её находить? Эти вопросы частенько представляются сложными и непонятными... Хотя, на самом деле, всё чрезвычайно просто. В чём вы сможете убедиться лично, прочитав эту страничку. Поехали?)

    Ну, что тут сказать... Только респект.) Да! Естественная область определения функции (о которой здесь идёт речь) совпадает с ОДЗ выражений, входящих в функцию. Соответственно, и ищутся они по одним и тем же правилам.

    А сейчас рассмотрим не совсем естественную область определения.)

    Дополнительные ограничения на область определения функции.

    Здесь речь пойдёт об ограничениях, которые накладываются заданием. Т.е. в задании присутствуют какие-то дополнительные условия, которые придумал составитель. Или ограничения выплывают из самого способа задания функции.

    Что касается ограничений в задании - тут всё просто. Обычно, и искать-то ничего не надо, всё в задании уже сказано. Напомню, что ограничения, написанные автором задания, никак не отменяют принципиальные ограничения математики. Нужно просто не забыть учесть условия задания.

    Например, такое задание:

    Найти область определения функции:

    на множестве положительных чисел.

    Естественную область определения этой функции мы нашли выше. Эта область:

    D(f)=(-∞ ; -1) (-1; 2]

    В словесном способе задания функции нужно внимательно читать условие и находить там ограничения на иксы. Иногда глаза ищут формулы, а слова свистят мимо сознания да...) Пример из предыдущего урока:

    Функция задана условием: каждому значению натурального аргумента х ставится в соответствие сумма цифр, из которых состоит значение х.

    Здесь надо заметить, что речь идёт только о натуральных значениях икса. Тогда и D(f) мгновенно записывается:

    D(f): х N

    Как видите, область определения функции - не такое уж сложное понятие. Нахождение этой области сводится к осмотру функции, записи системы неравенств и решению этой системы. Конечно, системы бывают всякие, простые и сложные. Но...

    Открою маленький секрет. Иногда функция, для которой надо найти область определения, выглядит просто устрашающе. Хочется побледнеть и заплакать.) Но стоит записать систему неравенств... И, вдруг, системка оказывается элементарной! Причём, частенько, чем ужаснее функция, тем проще система...

    Мораль: глаза боятся, голова решает!)

    Любое выражение с переменной имеет свою область допустимых значений, где оно существует. ОДЗ необходимо всегда учитывать при решении. При его отсутствии можно получить неверный результат.

    В данной статье будет показано, как правильно находить ОДЗ, использовать на примерах. Также будет рассмотрена важность указания ОДЗ при решении.

    Допустимые и недопустимые значения переменных

    Данное определение связано с допустимыми значениями переменной. При введении определения посмотрим, к какому результату приведет.

    Начиная с 7 класса, мы начинаем работать с числами и числовыми выражениями. Начальные определения с переменными переходят к значению выражений с выбранными переменными.

    Когда имеются выражения с выбранными переменными, то некоторые из них могут не удовлетворять. Например, выражение вида 1: а, если а = 0 , тогда оно не имеет смысла, так как делить на ноль нельзя. То есть выражение должно иметь такие значения, которые подойдут в любом случае и дадут ответ. Иначе говоря, имеют смысл с имеющимися переменными.

    Определение 1

    Если имеется выражение с переменными, то оно имеет смысл только тогда, когда при их подстановке значение может быть вычислено.

    Определение 2

    Если имеется выражение с переменными, то оно не имеет смысл, когда при их подстановке значение не может быть вычислено.

    То есть отсюда следует полное определение

    Определение 3

    Существующими допустимыми переменными называют такие значения, при которых выражение имеет смысл. А если смысла не имеет, значит они считаются недопустимыми.

    Для уточнения вышесказанного: если переменных более одной, тогда может быть и пара подходящих значений.

    Пример 1

    Для примера рассмотрим выражение вида 1 x - y + z , где имеются три переменные. Иначе можно записать, как x = 0 , y = 1 , z = 2 , другая же запись имеет вид (0 , 1 , 2) . Данные значения называют допустимыми, значит, можно найти значение выражения. Получим, что 1 0 - 1 + 2 = 1 1 = 1 . Отсюда видим, что (1 , 1 , 2) недопустимы. Подстановка дает в результате деление на ноль, то есть 1 1 - 2 + 1 = 1 0 .

    Что такое ОДЗ?

    Область допустимых значений – важный элемент при вычислении алгебраических выражений. Поэтому стоит обратить на это внимание при расчетах.

    Определение 4

    Область ОДЗ – это множество значений, допустимых для данного выражения.

    Рассмотрим на примере выражения.

    Пример 2

    Если имеем выражение вида 5 z - 3 , тогда ОДЗ имеет вид (− ∞ , 3) ∪ (3 , + ∞) . Эта область допустимых значений, удовлетворяющая переменной z для заданного выражения.

    Если имеется выражения вида z x - y , тогда видно, что x ≠ y , z принимает любое значение. Это и называют ОДЗ выражения. Его необходимо учитывать, чтобы не получить при подстановке деление на ноль.

    Область допустимых значений и область определения имеет один и тот же смысл. Только второй из них используется для выражений, а первый – для уравнений или неравенств. При помощи ОДЗ выражение или неравенство имеет смысл. Область определения функции совпадает с областью допустимых значений переменной х к выражению f (x) .

    Как найти ОДЗ? Примеры, решения

    Найти ОДЗ означает найти все допустимые значения, подходящие для заданной функции или неравенства. При невыполнении этих условий можно получить неверный результат. Для нахождения ОДЗ зачастую необходимо пройти через преобразования в заданном выражении.

    Существуют выражения, где их вычисление невозможно:

    • если имеется деление на ноль;
    • извлечение корня из отрицательного числа;
    • наличие отрицательного целого показателя – только для положительных чисел;
    • вычисление логарифма отрицательного числа;
    • область определения тангенса π 2 + π · k , k ∈ Z и котангенса π · k , k ∈ Z ;
    • нахождение значения арксинуса и арккосинуса числа при значении, не принадлежащем [ - 1 ; 1 ] .

    Все это говорит о том, как важно наличие ОДЗ.

    Пример 3

    Найти ОДЗ выражения x 3 + 2 · x · y − 4 .

    Решение

    В куб можно возводить любое число. Данное выражение не имеет дроби, поэтому значения x и у могут быть любыми. То есть ОДЗ – это любое число.

    Ответ: x и y – любые значения.

    Пример 4

    Найти ОДЗ выражения 1 3 - x + 1 0 .

    Решение

    Видно, что имеется одна дробь, где в знаменателе ноль. Это говорит о том, что при любом значении х мы получим деление на ноль. Значит, можно сделать вывод о том, что это выражение считается неопределенным, то есть не имеет ОДЗ.

    Ответ: ∅ .

    Пример 5

    Найти ОДЗ заданного выражения x + 2 · y + 3 - 5 · x .

    Решение

    Наличие квадратного корня говорит о том, что это выражение обязательно должно быть больше или равно нулю. При отрицательном значении оно не имеет смысла. Значит, необходимо записать неравенство вида x + 2 · y + 3 ≥ 0 . То есть это и есть искомая область допустимых значений.

    Ответ: множество x и y , где x + 2 · y + 3 ≥ 0 .

    Пример 6

    Определить ОДЗ выражения вида 1 x + 1 - 1 + log x + 8 (x 2 + 3) .

    Решение

    По условию имеем дробь, поэтому ее знаменатель не должен равняться нулю. Получаем, что x + 1 - 1 ≠ 0 . Подкоренное выражение всегда имеет смысл, когда больше или равно нулю, то есть x + 1 ≥ 0 . Так как имеет логарифм, то его выражение должно быть строго положительным, то есть x 2 + 3 > 0 . Основание логарифма также должно иметь положительное значение и отличное от 1 , тогда добавляем еще условия x + 8 > 0 и x + 8 ≠ 1 . Отсюда следует, что искомое ОДЗ примет вид:

    x + 1 - 1 ≠ 0 , x + 1 ≥ 0 , x 2 + 3 > 0 , x + 8 > 0 , x + 8 ≠ 1

    Иначе говоря, называют системой неравенств с одной переменной. Решение приведет к такой записи ОДЗ [ − 1 , 0) ∪ (0 , + ∞) .

    Ответ: [ − 1 , 0) ∪ (0 , + ∞)

    Почему важно учитывать ОДЗ при проведении преобразований?

    При тождественных преобразованиях важно находить ОДЗ. Бывают случаи, когда существование ОДЗ не имеет место. Чтобы понять, имеет ли решение заданное выражение, нужно сравнить ОДЗ переменных исходного выражения и ОДЗ полученного.

    Тождественные преобразования:

    • могут не влиять на ОДЗ;
    • могут привести в расширению или дополнению ОДЗ;
    • могут сузить ОДЗ.

    Рассмотрим на примере.

    Пример 7

    Если имеем выражение вида x 2 + x + 3 · x , тогда его ОДЗ определено на всей области определения. Даже при приведении подобных слагаемых и упрощении выражения ОДЗ не меняется.

    Пример 8

    Если взять пример выражения x + 3 x − 3 x , то дела обстоят иначе. У нас имеется дробное выражение. А мы знаем, что деление на ноль недопустимо. Тогда ОДЗ имеет вид (− ∞ , 0) ∪ (0 , + ∞) . Видно, что ноль не является решением, поэтому добавляем его с круглой скобкой.

    Рассмотрим пример с наличием подкоренного выражения.

    Пример 9

    Если имеется x - 1 · x - 3 , тогда следует обратить внимание на ОДЗ, так как его необходимо записать в виде неравенства (x − 1) · (x − 3) ≥ 0 . Возможно решение методом интервалов, тогда получаем, что ОДЗ примет вид (− ∞ , 1 ] ∪ [ 3 , + ∞) . После преобразования x - 1 · x - 3 и применения свойства корней имеем, что ОДЗ можно дополнить и записать все в виде системы неравенства вида x - 1 ≥ 0 , x - 3 ≥ 0 . При ее решении получаем, что [ 3 , + ∞) . Значит, ОДЗ полностью записывается так: (− ∞ , 1 ] ∪ [ 3 , + ∞) .

    Нужно избегать преобразований, которые сужают ОДЗ.

    Пример 10

    Рассмотрим пример выражения x - 1 · x - 3 , когда х = - 1 . При подстановке получим, что - 1 - 1 · - 1 - 3 = 8 = 2 2 . Если это выражение преобразовать и привести к виду x - 1 · x - 3 , тогда при вычислении получим, что 2 - 1 · 2 - 3 выражение смысла не имеет, так как подкоренное выражение не должно быть отрицательным.

    Следует придерживаться тождественных преобразований, которые ОДЗ не изменят.

    Если имеются примеры, которые его расширяют, тогда его нужно добавлять в ОДЗ.

    Пример 11

    Рассмотрим на примере дроби вида x x 3 + x . Если сократить на x , тогда получаем, что 1 x 2 + 1 . Тогда ОДЗ расширяется и становится (− ∞ 0) ∪ (0 , + ∞) . Причем при вычислении уже работаем со второй упрощенной дробью.

    При наличии логарифмов дело обстоит немного иначе.

    Пример 12

    Если имеется выражение вида ln x + ln (x + 3) , его заменяют на ln (x · (x + 3)) , опираясь на свойство логарифма. Отсюда видно, что ОДЗ с (0 , + ∞) до (− ∞ , − 3) ∪ (0 , + ∞) . Поэтому для определения ОДЗ ln (x · (x + 3)) необходимо производить вычисления на ОДЗ, то есть (0 , + ∞) множества.

    При решении всегда необходимо обращать внимание на структуру и вид данного по условию выражения. При правильном нахождении области определения результат будет положительным.

    Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

    Рассказать друзьям