Что такое ESR? ESR. Способы измерения Каким должно быть esr конденсатора

💖 Нравится? Поделись с друзьями ссылкой

Мы уже привыкли к основным параметрам конденсатора: ёмкости и рабочему напряжению. Но в последнее время не менее важным параметром стало его эквивалентное последовательное сопротивление (ЭПС). Что же это такое и на что оно влияет?

Так как ЭПС наиболее сильно влияет на работу электролитических конденсаторов, то в дальнейшем речь пойдёт именно о них. Сейчас мы разберём электролитический конденсатор по косточкам и узнаем, какие же тайны он скрывает.

Любой электронный компонент не идеален. Это относится и к конденсатору. Совокупность его свойств показывает условная схема.

Как видим, реальный конденсатор состоит из ёмкости C , которую мы привыкли видеть на схемах в виде двух вертикальных полос. Далее резистор R s , который символизирует активное сопротивление проволочных выводов и контактного сопротивления вывод - обкладка. На фото видно, как проволочные выводы крепятся к обкладкам методом заклёпочного соединения.

Так как любой, даже очень хороший диэлектрик имеет определённое сопротивление (до сотен мегаом), то параллельно обкладкам изображается резистор Rp . Именно через этот «виртуальный» резистор течёт так называемый ток утечки. Естественно, никаких резисторов внутри конденсатора нет. Это лишь для наглядности и удобного представления.

Из-за того, что обкладки у электролитического конденсатора скручиваются и устанавливаются в алюминиевый корпус, образуется индуктивность L .

Свои свойства эта индуктивность проявляет лишь на частотах выше резонансной частоты конденсатора. Приблизительное значение этой индуктивности - десятки наногенри.

Итак, из всего этого выделим то, что входит в ЭПС электролитического конденсатора:

    Сопротивление, которое вызвано потерями в диэлектрике из-за его неоднородности, примесей и наличия влаги;

    Омическое сопротивление проволочных выводов и обкладок. Активное сопротивление проводов;

    Контактное сопротивление между обкладками и выводами;

    Сюда же можно включить и сопротивление электролита, которое увеличивается из-за испарения растворителя электролита и изменения его химического состава вследствие взаимодействия его с металлическими обкладками.

Все эти факторы суммируются и образуют сопротивление конденсатора, которое и назвали эквивалентным последовательным сопротивлением - сокращённо ЭПС, а на зарубежный манер ESR (E quivalent S erial R esistance).

Как известно, электролитический конденсатор в силу своего устройства может работать только в цепях постоянного и пульсирующего тока из-за своей полярности. Собственно, его и применяют в блоках питания для фильтрации пульсаций после выпрямителя. Запомним эту особенность конденсатора - пропускать импульсы тока.

А если ESR - это, по сути, сопротивление, то на нём при протекании импульсов тока будет выделятся тепло. Вспомните о мощности резистора . Таким образом, чем больше ЭПС - тем сильнее будет греться конденсатор.

Нагрев электролитического конденсатора - это очень плохо. Из-за нагрева электролит начинает закипать и испаряться, конденсатор вздувается. Наверное, уже замечали на электролитических конденсаторах защитную насечку на верхней части корпуса.

При длительной работе конденсатора и повышенной температуре внутри его электролит начинает испаряться, и давить на эту насечку. Со временем давление внутри возрастает настолько, что насечка разрывается, высвобождая газ наружу.


"Хлопнувший" конденсатор на плате блока питания (причина - превышение допустимого напряжения)

Также защитная насечка предотвращает (или ослабляет) взрыв конденсатора при превышении допустимого напряжения или изменении его полярности.

На практике бывает и наоборот - давление выталкивает изолятор со стороны выводов. Далее на фото показан конденсатор, который высох. Ёмкость его снизилась до 106 мкФ, а ESR при измерении составило 2,8Ω, тогда как нормальное значение ESR для нового конденсатора с такой же ёмкостью лежит в пределах 0,08 - 0,1Ω.

Электролитические конденсаторы выпускают на разную рабочую температуру. У алюминиевых электролитических конденсаторов нижняя граница температуры начинается с - 60 0 С, а верхняя ограничена +155 0 С. Но в большинстве своём такие конденсаторы рассчитаны на работу в температурном диапазоне от -25 0 С до 85 0 С и от -25 0 С до 105 0 С. На этикетке иногда указывается только верхний температурный предел: +85 0 С или +105 0 С.

Наличие ЭПС в реальном электролитическом конденсаторе влияет на его работу в высокочастотных схемах. И если для обычных конденсаторов это влияние не столь выражено, то вот для электролитических конденсаторов оно играет весьма важную роль. Особенно это касается их работы в цепях с высоким уровнем пульсаций, когда протекает существенный ток и за счёт ESR выделяется тепло.

Взгляните на фото.


Вздувшиеся электролитические конденсаторы (причина - длительная работа при повышенной температуре)

Это материнская плата персонального компьютера, который перестал включаться. Как видим, на печатной плате рядом с радиатором процессора расположено четыре вздувшихся электролитических конденсатора. Длительная работа при повышенной температуре (внешний нагрев от радиатора) и приличный срок эксплуатации привёл к тому, что конденсаторы «хлопнули». Виной тому - нагрев и ESR. Плохое охлаждение отрицательно сказывается не только на работе процессоров и микросхем, но, как оказывается, и на электролитических конденсаторах!

Снижение температуры окружающей среды на 10 0 C продлевает срок службы электролитического конденсатора почти вдвое.

Аналогичная картина наблюдается в отказавших блоках питания ПК - электролитические конденсаторы также вздуваются, что приводит к просадке и пульсациям напряжения питания.


Неисправные конденсаторы в БП ПК ATX (причина - низкое качество конденсаторов)

Нередко из-за длительной работы импульсные блоки питания точек доступа, роутеров Wi-Fi, всевозможных модемов также выходят из строя по причине «хлопнувших» или потерявших ёмкость конденсаторов. Не будем забывать, что при нагреве электролит высыхает, а это приводит к снижению ёмкости. Пример из практики я описывал .

Из всего сказанного следует, что электролитические конденсаторы, работающие в высокочастотных импульсных схемах (блоки питания, инверторы, преобразователи, импульсные стабилизаторы) работают в довольно экстремальных условиях и выходят из строя чаще. Зная это производители выпускают специальные серии с низким ESR. На таких конденсаторах, как правило, присутствует надпись Low ESR , что означает "низкое ЭПС".

Известно, что конденсатор обладает ёмкостным или реактивным сопротивлением, которое снижается с ростом частоты переменного тока.

Таким образом, с ростом частоты переменного тока, реактивное сопротивление конденсатора будет падать, но только до тех пор, пока оно не приблизится к величине эквивалентного последовательного сопротивления (ESR). Его то и необходимо измерить. Поэтому многие приборы - измерители ESR (ESR-метры) измеряют ЭПС на частотах в несколько десятков - сотен килогерц. Это необходимо для того, чтобы «убрать» величину реактивного сопротивления из результатов измерения.

Стоит отметить, что на величину ESR конденсатора влияет не только частота пульсаций тока, но и напряжение на обкладках, температура окружающей среды, качество изготовления. Поэтому однозначно сказать, что ESR конденсатора, например, равно 3 омам, нельзя. На разной рабочей частоте величина ESR будет разной.

ESR-метр

При проверке конденсаторов , особенно электролитических, стоит обращать внимание на величину ESR. Для тестирования конденсаторов и измерения ESR существует немало серийно выпускаемых приборов. На фото универсальный тестер радиокомпонентов (LCR-T4 Tester) функционал которого поддерживает замер ESR конденсаторов.

В радиотехнических журналах можно встретить описания самодельных приборов и приставок к мультиметрам для измерения ESR. В продаже можно найти и узкоспециализированные ESR-метры, которые способны измерять ёмкость и ЭПС без выпайки их из платы, а также разряжать их перед этим с целью защиты прибора от повреждения высоким остаточным напряжением конденсатора. К таким приборам относятся, например, такие как ESR-micro v3.1, ESR-micro V4.0s, ESR-micro v4.0SI.

При ремонте электроники приходится часто менять электролитические конденсаторы. При этом для оценки их качества измеряются такие параметры, как ёмкость и ESR. Чтобы было с чем сравнивать, была составлена таблица ESR , в которой указано ЭПС новых электролитических конденсаторов разных ёмкостей. Данную таблицу можно использовать для оценки пригодности того или иного конденсатора для дальнейшей службы.

Что такое ESR?

Теория

ESR - Equivalent Series Resistance - один из параметров конденсатора, характеризующий его активные потери в цепи переменного тока. В эквиваленте его можно представить, как включенный последовательно с конденсатором резистор, сопротивление которого определяется, главным образом, диэлектрическими потерями, а так же сопротивлением обкладок, внутренних контактных соединений и выводов конденсатора. В русскоязычной аббревиатуре - Эквивалентное Последовательное Сопротивление - ЭПС .

Потери в диэлектрике, обусловленные особенностями его поляризации, составляют основную часть потерь в конденсаторе и определяются материалом, а так же толщиной слоя диэлектрика. В электролитических конденсаторах значимой частью ESR является сопротивление жидкого электролита, который используется в качестве составляющей одной из обкладок для обеспечения максимальной площади соприкосновения с диэлектриком. Если сопротивление электролита в конденсаторе рассмотреть как проводник с поперечным сечением, равным площади одной из обкладок и длиной проводника, приблизительно равной толщине пропитанной бумаги, можно предположить, что эта величина будет относительно небольшой. В реальных конденсаторах средних размеров типовое значение составит 0.01Ом при 20°C. Но, следует учитывать, что для конденсаторов большой ёмкости, используемых в фильтрах выпрямителей ИИП на рабочей частоте порядка 100кГц, когда его реактивное сопротивление измеряется тысячными долями Ома, эта величина будет составлять достаточно большие потери. Величина диэлектрических потерь на таких частотах в электролитических конденсаторах фильтров ИИП обычно в несколько раз больше, и лишь в самых лучших случаях может быть примерно равна и даже меньше потерь в электролите.

Сопротивление электролита существенно зависит от температуры по причине изменения степени его вязкости и подвижности ионов. В процессе работы происходит нагрев диэлектрика и электролита переменным током, в связи с чем может существенно уменьшаться сопротивление электролита, тогда ESR конденсатора будет определяться, главным образом, его диэлектрическими потерями. В случаях разогрева до температуры кипения, электролит утрачивает свои первоначальные свойства и при последующем охлаждении становится более вязким, что значительно повышает его сопротивление. Дальнейшая эксплуатация будет вызывать ещё больший разогрев и ухудшение качества электролита, что в последствии приведёт к непригодности конденсатора для дальнейшей работы в устройстве. Обычно неисправные электролитические конденсаторы, в которых кипел электролит, определяются визуально по вздувшемуся и разгерметизированному корпусу.

Для надёжности работы электролитических конденсаторов очень важен правильный выбор его типа, номинала и максимального напряжения в зависимости от режимов. Для фильтров преобразователей, работающих на частотах десятков килогерц, производители выпускают специальные конденсаторы с малым ESR и указывают полное сопротивление переменному току (импеданс Z) для всех номиналов в таблицах. Тип таких конденсаторов сопровождается пометкой в технической документации - Low impedance или Low ESR .

Практика

Электролитические конденсаторы это навереное единственные электронные элементы, которые страдают от высыхания. Если у вас есть любые электронные устройства, которые на протяжении многих лет работали, но вдруг перестали исправно функционировать, имеются хорошие шансы, что один или несколько электролитических конденсаторов внутри него деградировали и стали причиной проблемы. Электролитические конденсаторы выходят из строя несколькими способами: они могут стать электрически проводящие, вызывая постоянный ток через них, что может даже их взорвать. Они могут уменьшаться в величине емкости. Но наиболее часто увеличивается их эквивалентное последовательное сопротивление, которое является очень нежелательным.

ESR электролитического конденсатора обычно составляет доли Ом для конденсаторов низкого напряжения (таких как 1000µF, 16V), и может быть два или три Ома для малой емкости и высокого рабочего напряжения (1uF, 450V). Когда конденсатор стареет, это сопротивление возрастает, и часто из-за этого оборудование полностью прекращает функционировать. Очень часто конденсаторы увеличивают сопротивление ESR до 100 раз от их нормального сопротивления, в то время как их емкость остается хорошей! На измерении емкости они покажут близкое к правильному значение, но они уже не годные! Для анализа состояния конденсатора применяются измерители и пробники ESR. ESR-метр может проверить конденсаторы, даже когда они находятся в цепи. Соединенные параллельно с ним другие детали будут иметь минимальное влияние на измерение. Сколько примерно должен иметь сопротивления тот или иной исправный конденсатор - смотрите в таблице . Таковы особенности, которые делают ESR-метр незаменимым прибором для диагностики и ремонта электронного оборудования.

Equivalent Series Resistance (Эквивалентное Последовательное Сопротивление - ЭПС), как один из значимых паразитных параметров электролитических конденсаторов, в последние годы приобрёл широкую популярность среди ремонтников электронной аппаратуры. Измерители и пробники ESR для многих мастеров стали прибором первой необходимости наряду с тестером или мультиметром.
Увеличение ESR конденсатора на несколько Ом, а иногда на несколько десятых долей Ома, может являться причиной неработоспособности устройства, в котором он установлен, что иногда невозможно выявить существующими измерителями ёмкости, не способными учитывать другие параметры конденсатора.

Обычно в ремонтной практике не требуется особой точности в измерении ESR, поэтому ощутимая погрешность пробников чаще не вызывает неудобств в отыскании неисправных элементов, а определение состояния конденсатора пробником может упрощаться до оценки его качества по принципу – годен или не годен для работы в конкретном узле устройства.
Но, следует отметить, для конденсаторов, работающих при больших импульсных токах, например, в фильтрах преобразователей, иногда требуется более объективная оценка качества, а погрешность в десятые и даже сотые доли Ома может иметь существенное значение.

Большинство популярных и применяемых в ремонтной практике приборов и пробников ESR основаны на измерении полного сопротивления переменному току на частоте 40 - 100 кГц. На частотах этого порядка для электролитических конденсаторов больших номиналов такие приборы покажут значения, максимально близкие к величине ESR, которая составит основную часть импеданса на этих частотах.
Недостатком такого способа является значительная погрешность при измерении малых номиналов ёмкостей (менее 10 uF), когда реактивное сопротивление конденсатора на данной частоте соизмеримо и может превышать ESR.
Тогда прибор покажет значение импеданса, а реальное значение ESR может быть в несколько раз меньше.

Одним из требований в плане практичности использования ESR-пробников является возможность производить замеры без выпаивания конденсатора из платы. Следовательно, процесс измерения должен происходить при достаточно низком падении напряжения на проверяемом конденсаторе, исключая отпирание переходов полупроводниковых элементов схемы.

В большинстве случаев такие нехитрые измерители импеданса мастера собирают самостоятельно по схемам, широко распространённым в интернете, но кто-то применяет и свои разработки с учётом личных предпочтений в плане удобства пользования или точности измерений.
В продаже существуют как простые пробники со светодиодной или стрелочной индикацией, так и измерители с цифровой шкалой различной степени сложности.

Подробно останавливаться на принципах и методах измерения импеданса нет необходимости, таких обсуждений и описаний существует достаточно много и их нетрудно найти в интернете. Но некоторые особенности отдельных конструкций всё же могут заслуживать внимания.

В этой статье предлагается рассмотреть один из способов измерения ESR и ёмкости, как отдельных параметров конденсатора.

Достаточно точный и несложный метод, который используется во многих любительских и промышленных приборах, реализован в измерителе Micro, популярном среди мастеров – участников ремонтных форумов monitor.net.ru и monitor.espec.ws.

Если испытываемый конденсатор ёмкостью C заряжать от источника постоянного тока I , напряжение на его выводах будет линейно нарастать от значения U R по закону:

C dU/dt = I = const .

U R – падение напряжения на активном сопротивлении конденсатора (ESR).

В таком случае ёмкость конденсатора будет определяться выражением:

Посчитать U R для вычисления ESR можно несколькими способами, например, составив уравнение прямой по двум точкам и найти координату Y для нулевого значения X, либо геометрически, исходя из соотношения сторон подобных треугольников...

Активное сопротивление конденсатора (ESR) в таком случае составит:

Для реализации такого метода нет необходимости в применении АЦП, пороговые значения напряжений для управления таймером устанавливаются компараторами, а математические вычисления ёмкости и ESR производятся микроконтроллером с выводом информации на ЖК дисплей.

В некоторых подобных конструкциях для измерения ESR используется более простой, но менее точный способ.
Производится измерение уровня напряжения U R посредством АЦП в начальный момент времени.
Несмотря на то, что измерительный импульс достаточно короткий (1-2 uS), конденсаторы меньшей ёмкости успевают зарядиться до большего значения, чем конденсаторы большой ёмкости, что создаёт некоторую погрешность в измерении ESR разных номиналов конденсаторов.

Следует учитывать, что ESR, измеренный постоянным током, является относительным показателем качества электролитического конденсатора.
Значимой составляющей ESR являются диэлектрические потери, которые существенно меняются с изменением частоты переменного тока.

Существуют более сложные и точные методики и способы измерений, основанные на анализе сдвига фаз в конденсаторе. В этом случае ESR определится произведением импеданса и тангенса угла потерь.

Замечания и предложения принимаются и приветствуются!

ИЗМЕРИТЕЛЬ ESR

Для проверки конденсаторов, решил собрать так называемый "измеритель ESR”. Ведь с испытанием диодов и резисторов проблем не возникает, а вот с конденсаторами сложнее. Как известно, ESR - это сокращение от Equivalent Serial Resistance, - означает "эквивалентное последовательное сопротивление”. Объясним проще. В упрощенном виде электролитический конденсатор представляет собой две алюминиевые ленточные обкладки, разделенные прокладкой из пористого материала, пропитанного электролитом (отсюда и название электролитический). Диэлектриком в таких конденсаторах является очень тонкая оксидная пленка, образующаяся на поверхности алюминиевой фольги при подаче на обкладки напряжения определенной полярности. К этим ленточным обкладкам присоединяются проволочные выводы. Ленты сворачиваются в рулон, и все это помещается в герметичный корпус. Благодаря очень малой толщине диэлектрика и большой площади обкладок оксидные конденсаторы при малых габаритах имеют большую емкость.

В процессе работы внутри конденсатора протекают электрохимические процессы, разрушающие место соединения вывода с обкладками. Контакт нарушается, и в результате появляется так называемое переходное сопротивление, достигающее значения десятков ом и более, что эквивалентно включению последовательно с конденсатором резистора, который находится в самом конденсаторе. Зарядные и разрядные токи вызывают нагрев этого "резистора”, что еще больше усиливает разрушительный процесс. Другая причина выхода из строя электролитического конденсатора - это "высыхание”, когда из-за плохой герметизации происходит испарение электролита. В этом случае возрастает реактивное емкостное (Хс) сопротивление конденсатора, так как емкость последнего уменьшается. Наличие последовательного сопротивления негативно сказывается на работе устройства, нарушая логику работы конденсатора в схеме. (Если включить, например, последовательно с конденсатором фильтра выпрямителя резистор сопротивлением десяток Ом, на выходе последнего резко возрастут пульсации выпрямленного напряжения). Особенно сильно сказывается повышенное значение ESR конденсаторов (причем всего до пары Ом) на работе импульсных блоков питания.

Принцип работы данного измерителей ESR основан на измерении емкостного сопротивления конденсатора, т.е., по сути, это омметр, работающий на переменном токе.

Как известно, Xс=1/2πfC , где

Xс - емкостное сопротивление, Ом;
f - частота, Герц;
С - емкость, Фарад.

На микросхеме DD1 собран генератор прямоугольных импульсов (элементы D1.1, D1.2), буферный усилитель (элементы D1.3, D1.4) и усилительный каскад на транзисторах. Частота генерации определяется элементами С1 и R1 и равна 100 кГц. Прямоугольные импульсы через разделительный конденсатор С2 подаются на первичную обмотку повышающего трансформатора Т1. Во вторичную обмотку после выпрямителя на диоде включен микроамперметр, по шкале которого отсчитывают значение ESR. Конденсатор С3 сглаживает пульсации выпрямленного напряжения. При включении питания стрелка микроамперметра отклоняется на конечную отметку шкалы (добиваются подбором резистора R2). Такое ее положение соответствует значению "бесконечность” измеряемого ESR. Если подключить исправный оксидный конденсатор параллельно обмотке I трансформатора Т1, то благодаря низкому емкостному сопротивлению конденсатор зашунтирует обмотку, и стрелка измерителя приблизится к нулю. При наличии же в измеряемом дефекта, в нем повышается значение ESR. Часть переменного тока потечет через обмотку, и стрелка будет все меньше отклоняться от значения "бесконечность”. Чем больше ESR, тем больший ток протекает через обмотку и меньший через конденсатор, и тем ближе к положению "бесконечность” находится стрелка.

Трансформатор наматывают на ферритовом кольце с внешним диаметром 10...15 мм. Первичная обмотка содержит 10 витков провода ПЭВ-2 диаметром 0,5 мм, вторичная - 200 витков ПЭВ-2 диаметром 0,1 мм. Диод обязательно должен быть германиевым, например Д9, Д310, Д311, ГД507. Кремниевые диоды имеют большое пороговое напряжение открывания (0,5...0,7 В), что приведет к сильной нелинейности шкалы измерителя в области измерения малых сопротивлений. Градуируют измеритель ESR с помощью нескольких резисторов сопротивлением 1 Ом. Замкнув щупы, отмечают, где будет нулевая отметка шкалы. Из-за наличия сопротивления в соединительных проводах, она может не совпадать с положением стрелки при выключенном питании. Поэтому провода, идущие к щупам, должны быть по возможности короткими. Далее подключают два параллельно соединенных резистора на 1 Ом и отмечают положение стрелки, соответствующее измеряемому сопротивлению 0,5 Ом. Затем подключают резисторы на 1, 2, 3, 5 и 10 Ом и отмечают положения стрелки при измерении этих сопротивлений. На этом можно остановиться, так как электролитические конденсаторы емкостью более 4,7 мкФ с ESR больше 10 Ом хотя и могут работать, но уже не долго:)

В последнее время в радиолюбительской и профессиональной литературе очень много внимания уделяется таким устройствам как электролитические конденсаторы. И не удивительно, ведь частоты и мощности растут «на глазах», и на эти конденсаторы ложится огромная ответственность за работоспособность как отдельных узлов, так и схемы в целом.

Хочу сразу предупредить, что большинство узлов и схемных решений было почерпнуто из форумов и журналов, поэтому я никакого авторства со своей стороны не заявляю, напротив, хочу помочь начинающим ремонтникам определиться в бесконечных схемах и вариациях измерителей и пробников. Все предоставленные здесь схемы были не однократно собраны и проверены в работе, и сделаны соответствующие выводы по работе той или иной конструкции.

Итак, первая схема, ставшая чуть ли не классикой для начинающих ESR Метростроителей «Манфред» - так ее любезно называют форумчане, по имени ее созидателя, Манфреда Луденса ludens.cl/Electron/esr/esr.html

Её повторили сотни, а может и тысячи радиолюбителей, и остались в основном довольны результатом. Основное его достоинство, это последовательная схема измерения, благодаря чему, минимальному ESR соответствует максимальное напряжение на шунтовом резисторе R6, что, в свою очередь полезно сказывается на работе диодов детектора.

Эту схему я сам не повторял, но пришел к аналогичной путем проб и ошибок. Из недостатков можно отметить «гуляние» нуля от температуры, и зависимость шкалы от параметров диодов и ОУ. Повышенное напряжение питания, требуемое для работы прибора. Чувствительность прибора можно легко повысить, уменьшив резисторы R5 и R6 до 1-2 ома и, соответственно увеличив усиление ОУ, возможно придется его заменить на 2 более скоростных.

Мой первый пробник ЕПС, исправно работающий по сегодняшний день.


Схемы не сохранилось, да ее и можно сказать и не было, собрал со всего миру по нитке, то что меня устраивало схемотехнически, правда, за основу была взята такая вот схема из журнала радио:


Были произведены следующие изменения:

1. Питание от литиевого аккумулятора мобильника
2. исключен стабилизатор, так как пределы рабочих напряжений Литиевого Аккумулятора довольно узкие
3. трансформаторы TV1 TV2 шунтированы резисторами 10 и 100 Ом, для уменьшения выбросов при измерении малых ескостей
4. Выход 561лн2 был буферизирован 2мя комплементарными транзисторами.

В общем получился такой вот девайс:


После сборки и калибровки данного девайса были тут-же отремонтированы 5 цифровых телефонных аппаратов «Мередиан», которые уже лет 6 лежали в коробке с надписью «безнадежные». Все в отделе начали делать себе аналогичные пробнички:).

Для большей универсализации, мною были добавлены дополнительный функции:

1. приемник инфрокрасного излучения, для визуальной и слуховой проверки пультов ДУ, (очень востребованная функция для ремонтов телеков)
2. подсветка места касания щупами конденсаторов
3. «вибрик» от мобилки, помогает локализовать плохие пайки и микрофонный эффект в деталях.

Видео проверки пульта

А недавно на форуме «radiokot.ru» господин Simurg выложил статью посвященную аналогичному прибору. В нем он применил низковольтное питание, мостовую схему измерения, что позволило измерять конденсаторы со сверхнизким уровнем ESR.


Его коллега RL55 взяв схему Simurg за основу, предельно упростил приборчик, по его заявлениям не ухудшив параметры. Его схема выглядит вот так:


Прибор ниже, мне пришлось собирать на скорую руку, как говорится «по нужде». Был в гостях у родственников,так там телевизор сломался, никто не мог его отремонтировать. Вернее ремонтировать удавалось, но не более чем на неделю, все время горел транзистор строчной развертки, схемы телевизора не было. Тут вспомнил, что видел на форумах простенький пробничек, схему помнил наизусть, родственник тоже немного занимался радиолюбительством, аудио усилители «клепал», поэтому все детали быстро нашлись. Пару часов пыхтения паяльником, и родился вот такой приборчик:


Были в 5 минут локализованы и заменены 4 подсохших електролитика, которые мультиметром определялись как нормальные, выпито за успех некоторое количество благородного напитка. Телек после ремонта уже 4 года работает исправно.


Прибор этого типа стал как панацея в трудные минуты, когда нет с собою нормального тестера. Собирается быстро, производится ремонт, и напоследок торжественно дарится хозяину на память, и, «на случай чего». После такой церемонии душа платящего как правило раскрывается вдвое, а то и втрое шире:)

Захотелось чего-то синхронного, начал думать над схемой реализации, и вот в журнале «Радио 1 2011», как по мановению вошебнлй палочки опубликована статья, даже думать не пришлось. Решил проверить, что за зверь. Собрал, получилось вот так:


Особого восторга изделие не вызвало, работает практически как и все предыдущие, есть, конечно разница в показаниях в 1-2 деления, в определенных случаях. Может его показания и более достоверны, но пробник есть пробник, на качестве дефектации это почти никак не отражается. Тоже снабдил светодиодом, чтобы смотреть «куда суешь?».


В общем, для души и ремонтов делать можно. А для точных измерений надо поискать схему измерителя ESR посолиднее.

Ну, и на последок на сайте monitor.net, участник buratino выложил простейший проект, как из обычного дешевого цифрового мультиметра можно сделать пробник ESR. Проект так меня заинтриговал, что решил попробовать, и вот что у меня из этого вышло.


Корпус приспособил от маркера
Рассказать друзьям